cf-pandas
Release 0.8.1

Axiom Data Science

Feb 12, 2024

1 Installation
1.1 How to use cf-pandas
1.2 Reg: Write Regular Expressions

1.4 Widget to help humans select strings to match
1.5 API

Python Module Index

Index

1.3 Vocab: manage custom vocabularies

DOCUMENTATION

CHAPTER
ONE

INSTALLATION

To install from conda-forge:

>>> conda install -c conda-forge cf_pandas

To install from PyPI:

>>> pip install cf-pandas

1.1 How to use cf-pandas

The main use of cf-pandas currently is for selecting columns of a DataFrame that represent axes or coordinates of
the dataset and for selecting a variable from a pandas DataFrame using the accessor and a custom vocabulary that
searches column names for a match to the regular expressions, as well as some other capabilities that have been ported
over from cf-xarray. There are several class and utilities that support this functionality that are used internally but
are also helpful for other packages.

import cf_pandas as cfp
import pandas as pd

1.1.1 Get some data

Some data

url = "https://files.stage.platforms.axds.co/axiom/netcdf_harvest/basis/2013/BE2013_/
—data.csv.gz"

df = pd.read_csv(url)

df
time longitude latitude z profile temperature \

0 2013-08-07T22:26:00 -168.01784 65.409500 0.0 0 10.3291
1 2013-08-07T22:26:00 -168.01784 65.409500 66.0 0 NaN
2 2013-08-07T22:26:00 -168.01784 65.409500 65.0 0 NaN
3 2013-08-07T22:26:00 -168.01784 65.409500 64.0 0 NaN
4 2013-08-07T22:26:00 -168.01784 65.409500 63.0 0 NaN
12735 2013-09-24T22:59:00 -168.01384 60.516167 25.0 139 NaN
12736 2013-09-24T22:59:00 -168.01384 60.516167 24.0 139 NaN

12737 2013-09-24T22:59:00 -168.01384 60.516167 23.0 139 NaN

(continues on next page)

cf-pandas, Release 0.8.1

(continued from previous page)

12738 2013-09-24T22:59:00 -168.01384 60.516167 32.0 139 NaN
12739 2013-09-24T22:59:00 -168.01384 60.516167 90.0 139 NaN

pressure salinity chlorophyll _a conductivity distance segment
0 0.0 30.7286 NaN NaN 0.00 0
1 NaN NaN NaN NaN 0.00 0
2 NaN NaN NaN NaN 0.00 0
3 NaN NaN NaN NaN 0.00 0
4 NaN NaN NaN NaN 0.00 0
12735 NaN NaN NaN NaN 15575752.91 0
12736 NaN NaN NaN NaN 15575752.91 0
12737 NaN NaN NaN NaN 15575752.91 0
12738 NaN NaN NaN NaN 15575752.91 0
12739 NaN NaN NaN NaN 15575752.91 0

[12740 rows x 12 columns]

1.1.2 Basic accessor usage

The terminology all comes from cf-xarray which deals with multi-dimensional data and has more layers of stan-
dardized attributes. This package ports over useful functionality, retaining some of the complexity of terminology and
syntax from cf-xarray which doesn’t always apply. The perspective is to be able to think about and use DataFrames
of data in a similar manner to Datasets of data/model output.

When you use the cf-pandas accessor it will first validate that columns representing time, latitude, and longitude are
present and identifiable (by validating the object).

Using an approach copied directly from cf-xarray, cf-pandas contains a mapping of names from the CF conventions
that define the axes (“T”, “Z”, “Y”, “X”) and coordinates (“time”, “vertical”, “latitude”, “longitude”). These are built
in and used to identify columns containing axes and coordinates using name matching (column names are split by white
space for the comparison).

Check axes and coordinates mappings of the dataset:

df.cf.axes, df.cf.coordinates

({'z': ['z'], 'T": ["time']},
{'longitude': ['longitude'], 'latitude': ['latitude'], 'time': ['time']})

Check all available keys:

df.cf.keysQ

{'T', 'Z'", 'latitude', 'longitude', 'time'}

Is a certain key in the DataFrame?

"T" in df.cf, "X" in df.cf

(True, False)

2 Chapter 1. Installation

cf-pandas, Release 0.8.1

What CF standard names can be identified with strict matching in the column names? Column names will be split by
white space for this comparison.

df.cf.standard_names

{'latitude': ['latitude'], 'longitude': ['longitude'], 'time': ['time']}

1.1.3 Select variable

Selecting a variable typically requires knowing the name of the column representing the variable. What is demonstrated
here is an approach to selecting a column name containing the variable using regular expression matching. In this
case, the user defines the regular expression matching that will be used to identify matches to a variable. There are
helper functions for this process available in cf-pandas; see the Reg, Vocab, and widget classes and below for more
information.

Create custom vocabulary

More information about custom vocabularies and using the Vocab class here: https://cf-
pandas.readthedocs.io/en/latest/demo_vocab.html

You can make regular expressions for your vocabulary by hand or use the Reg class in cf-pandas to do so.

initialize class
vocab = cfp.Vocab()

define a regular expression to represent your variable
reg = cfp.Reg(include="salinity", exclude="soil", exclude_end="_qc")

Make an entry to add to your vocabulary
vocab.make_entry('salt", reg.pattern(), attr="standard_name")

Add another entry to vocab
vocab.make_entry("temp", "temp')

vocab

{'salt': {'standard_name': '(?i)A(?!.*(s0il))(?!.*(_qc)$)(?=.*salinity)'}, '"temp': {
—'standard_name': 'temp'}}

Access variable

Refer to the column of data you want by the nickname described in your custom vocabulary.

You can do this with a context manager, especially if you are using more than one vocabulary:

with cfp.set_options(custom_criteria=vocab.vocab):
print(df.cf["salt"])

0 30.7286
1 NaN
2 NaN

(continues on next page)

1.1. How to use cf-pandas 3

cf-pandas, Release 0.8.1

(continued from previous page)

3 NaN
4 NaN
12735 NaN
12736 NaN
12737 NaN
12738 NaN
12739 NaN

Name: salinity, Length: 12740, dtype: float64

Or you can set one for use generally in this kernel:

cfp.set_options(custom_criteria=vocab.vocab)
df.cf["salt"]

0 30.7286
1 NaN
2 NaN
3 NaN
4 NaN
12735 NaN
12736 NaN
12737 NaN
12738 NaN
12739 NaN

Name: salinity, Length: 12740, dtype: float64

Display mapping of all variables in the dataset that can be identified using the custom criteria/vocab we defined above:

df.cf.custom_keys

{'salt': ['salinity'], 'temp': ['temperature']}

1.1.4 Other utilities

Access all CF Standard Names

sn = cfp.standard_names()
sn[:5]

['acoustic_signal_roundtrip_travel_time_in_sea_water',
'aerodynamic_particle_diameter',
'aerodynamic_resistance’,

'age_of_sea_ice',
'age_of_stratospheric_air']

4 Chapter 1. Installation

cf-pandas, Release 0.8.1

Use vocabulary to match any list

This is the logic under the hood of the cf-pandas accessor that selects what column matches a variable nickname
according to the custom vocabulary. This comes from cf-xarray almost exactly. It is available as a separate function
because it is useful to use in other scenarios too. Here we filter the standard names just found by our custom vocabulary
from above.

cfp.match_criteria_key(sn, "salt", vocab.vocab)

['sea_water_practical_salinity_at_sea_floor',

'tendency_of_sea_water_salinity',

'sea_water_absolute_salinity"',
'tendency_of_sea_water_salinity_expressed_as_salt_content',
'change_over_time_in_sea_water_preformed_salinity',
'tendency_of_sea_water_salinity_due_to_vertical_mixing',
'tendency_of_sea_water_salinity_due_to_sea_ice_thermodynamics',
'sea_water_salinity',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_
-»submesoscale_eddy_advection',

'square_of_sea_surface_salinity',

'sea_water_cox_salinity',
'integral_wrt_depth_of_product_of_salinity_and_sea_water_density',
'sea_water_practical_salinity',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_eddy_
—advection',

'tendency_of_sea_water_salinity_due_to_horizontal _mixing',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_
—.mesoscale_eddy_advection',
'integral_wrt_depth_of_sea_water_practical_salinity',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_
—.mesoscale_eddy_diffusion',

'sea_surface_salinity',

'change_over_time_in_sea_water_absolute_salinity',
'tendency_of_sea_water_salinity_due_to_parameterized_eddy_advection',
'ratio_of_sea_water_practical_salinity_anomaly_to_relaxation_timescale',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_parameterized_
—dianeutral_mixing',

'product_of_eastward_sea_water_velocity_and_salinity',
'product_of_northward_sea_water_velocity_and_salinity',
'tendency_of_sea_water_salinity_expressed_as_salt_content_due_to_residual_mean_advection
‘*’vy

'sea_water_salinity_at_sea_floor',
'tendency_of_sea_water_salinity_due_to_advection',
'sea_water_reference_salinity',
'change_over_time_in_sea_water_practical_salinity',
'sea_water_knudsen_salinity',

'sea_water_preformed_salinity',

'change_over_time_in_sea_water_salinity',

'sea_ice_salinity']

1.1. How to use cf-pandas 5

cf-pandas, Release 0.8.1

1.2 Reg: Write Regular Expressions

This class will help you write simple regular expressions. The available options are:
These all work as logical “or” if there is more than one string specified:

* exclude (string or list)

e exclude_start (string or list)

* exclude_end (string or list)

e include (logical “and”, string or list)

* include_or (logical “or”, string or list)
* include_exact (string)

e include_start (string)

* include_end (string)

¢ and ignore_case (bool)

If you find you want to use more than one include_exact, include_start, or include_end at once, you should
write a new regular expression with the class, instead. That is, write multiple expressions and pipe them together with
a pipe between, like:

"expressionl|expression2"
rather than try to get everything into a single expression, or just use the built-in convenience function:
cfp.joinpat([regl, reg2])

Note: you may need to use Python package regex instead of re with piped-together expressions.

import cf_pandas as cfp
import regex

1.2.1 Write a regular expression

reg = cfp.Reg(include="one", exclude="two")
reg.pattern()

'(?)AC? . F(two)) (?=.*one) '

[string for string in ["onetwo","twothree","onethree"] if regex.match(reg.pattern(),.
—string)]

['onethree']

6 Chapter 1. Installation

cf-pandas, Release 0.8.1

1.3 Vocab: manage custom vocabularies

Custom vocabularies are used in cf-xarray and cf-pandas to search variable names and available metadata (in the
case of cf-xarray with Dataset variable attributes) and compare with regular expressions to make selections. These
make it possible to generically select variables from different Datasets and DataFrames. However, they are difficult to
write, handle, and maintain, and control which variables are found so being able to tweak them is important.

import cf_pandas as cfp
import regex

1.3.1 What does a custom vocabulary look like?

cf-xarray

For a netcdf-style Dataset, this criteria dictionary will be used to search over the attributes in each variable and compare
with the regular expressions to search for matches, in this case checking specifically the variable standard_name and
name. There will be a match to the nickname “ssh” if the standard_name for a variable is exactly “sea_surface_height”
or if the standard_name contains the string “sea_surface_elevation”.

cf-pandas

cf-pandas is made to access pandas DataFrames in an analogous manner to using the cf-xarray accessor with
Datasets. DataFrames do not have attributes to compare with, only the column name. So, every regular expression
for a given nickname (in the example given, “ssh” and “temp”), will be compared with the column name. The extra
dictionary structure is maintained in this case so that vocabularies can be used between cf-xarray and cf-pandas if
needed, for example, to select a model variable and compare it with a data file variable.

criteria = {

"ssh": {
"standard_name": "sea_surface_height$|sea_surface_elevation",
"name": "(?i)sea_surface_elevation(?!.*?_gc)"
1
"temp": {
"standard_name": "sea_water_temperature",
"name": " (?7i)temperature(?!.*(skin|ground|air|_qc))"
1,
}
criteria
{'ssh': {'standard_name': 'sea_surface_height$|sea_surface_elevation',
'name': '(?i)sea_surface_elevation(?!.*?_qc)'},
'temp': {'standard_name': 'sea_water_temperature’,
'name': '(?i)temperature(?!.*(skin|ground|air|_qgc))'}}

1.3. Vocab: manage custom vocabularies 7

cf-pandas, Release 0.8.1

1.3.2 How should | use the custom vocabulary?

You can set your vocabulary to be used generally, or use with a context-manager. I recommend using the context-
manager approach whenever you might use more than one vocabulary.

To set it generally for, for example, cf-xarray, you would do:
cf_xarray.set_options(custom_criteria=criteria)

or for cf-pandas, imported as cfp:

cfp.set_options(custom_criteria=criteria)

In this demo, we will use the context manager approach so that we can use more than one vocabulary. For example,
here we compare a list of strings with the vocabulary we called criteria and are searching for all matches in the list
to the variable by the nickname “ssh”.

vals = ["zeta", "sea_surface_height", "sea_surface", "sea_surface_elevation_zeta"]

with cfp.set_options(custom_criteria=criteria):
print(cfp.match_criteria_key(vals, "ssh"))

['sea_surface_elevation_zeta', 'sea_surface_height']

1.3.3 How can | make a custom vocabulary? Introducing the Vocab class.

As you can see, making criteria could be labor intensive. Also, users may want to create more than one of these
and use them separately or together in different circumstances, and save them for later. That is what the Vocab class in
cf-pandas is meant to help with.

In this example, we make an entry in our vocabulary that has two regular expressions in it to start.

initialize class
vocabl = cfp.Vocab()

Make an entry to add to your vocabulary

vocabl.make_entry("new_variable_nickname", ["match_this_exactly$", "match_that_exactly$
~"], attr="name")
{'new_variable_nickname': {'name': 'match_this_exactly$|match_that_exactly$'}}

Retrieve the vocabulary you’ve made with vocab1l.vocab:

vocabl.vocab

defaultdict(dict,
{'new_variable_nickname': {'name': 'match_this_exactly$|match_that_exactly$'}
-1)

And you can subsequently add other entries:

add another entry
vocabl.make_entry('new_variable_nickname", ["match_this_string", "match_that_exactly$"],.
—attr="long_name")

(continues on next page)

8 Chapter 1. Installation

cf-pandas, Release 0.8.1

(continued from previous page)

add another entry

vocabl.make_entry("other_variable_nickname", "match_that_string", attr="standard_name'")
{'new_variable_nickname': {'name': 'match_this_exactly$|match_that_exactly$', 'long_name
—': 'match_this_string|match_that_exactly$'}, 'other_variable_nickname': {'standard_name

—': 'match_that_string'}}

vocabl
{'new_variable_nickname': {'name': 'match_this_exactly$|match_that_exactly$', 'long_name
—"': "'match_this_string|match_that_exactly$'}, 'other_variable_nickname': {'standard_name

—"': 'match_that_string'}}

Test our new vocabulary:

vals = ["match_this_exactly", "match_this_exactly_but", "other_variable_nickname",
—"match_that_string"]

with cfp.set_options(custom_criteria=vocabl.vocab):
print(cfp.match_criteria_key(vals, "new_variable_nickname"))

['match_this_exactly']

1.3.4 Working with vocabularies

Save to file

Save your new vocabulary to a file with:

vocabl.save(filename)

Read from file

Retrieve your previously-saved vocabulary by inputting the path into a new instantiation of the Vocab class with:

vocab_read = cfp.Vocab(filepath)

Combine

vocabl = cfp.Vocab()
vocabl.make_entry('"new_variable_nickname", ["match_this_exactly$", "match_that_exactly$
"], attr="name")

vocab2 = cfp.Vocab()

vocab2.make_entry('new_variable_nickname", ["match_this_string", "match_that_exactly$"],.
—attr="long_name")
vocab2.make_entry("other_variable_nickname", "match_that_string", attr="standard_name")

vocabl + vocab?2

1.3. Vocab: manage custom vocabularies 9

cf-pandas, Release 0.8.1

{'other_variable_nickname': {'standard_name': 'match_that_string'}, 'new_variable_
—nickname': {'name': 'match_this_exactly$|match_that_exactly$', 'long_name': 'match_
—this_string|match_that_exactly$'}}

Merge 2 or more Vocab objects:

cfp.merge([vocabl, vocab2])

{'other_variable_nickname': {'standard_name': 'match_that_string'}, 'new_variable_
—nickname': {'name': 'match_this_exactly$|match_that_exactly$', 'long_name': 'match_
—this_string|match_that_exactly$'}}

Can also add in place

also works
vocabl += vocab2

1.3.5 Use the Reg class to write regular expressions

We used simple exact matching regular expressions above, but for anything more complicated it can be hard to write
regular expressions. You can use the Reg class in cf-pandas to write regular expressions with several options, as
demonstrated more in another doc page, and briefly here.

initialize class
vocab = cfp.Vocab()

define a regular expression to represent your variable
reg = cfp.Reg(include="temperature", exclude="air", exclude_end="_qc", include_start="sea

!

Make an entry to add to your vocabulary
vocab.make_entry("temp", reg.pattern(), attr="standard_name")

vocab

{"temp': {'standard_name': '(?i)A(?!.*(air))(?!.*(_qc)$)*sea.*(?=.*temperature)'}}

1.4 Widget to help humans select strings to match

The best way to understand this demo is with a Binder notebook since it includes a widget! Click on the badge to launch
the Binder notebook.

One way to deal with vocabularies (see vocab demo) is to create a vocabulary that represents exactly which variables
you want to match with for a given server. This way, when you are interacting with catalogs and data from that server
you can be sure that your vocabulary will pull out the correct variables. It is essentially a variable mapping in this use
case as opposed to a variable matching.

10 Chapter 1. Installation

https://cf-pandas.readthedocs.io/en/latest/demo_reg.html
https://mybinder.org/v2/gh/axiom-data-science/cf-pandas/HEAD?labpath=docs/demo_widget.ipynb
https://cf-pandas.readthedocs.io/en/latest/demo_vocab.html

cf-pandas, Release 0.8.1

Sometimes the variables we want to search through for making selections could be very long. This widget is meant
to help quickly include and exclude strings from the list and then allow for human-centered multi-select with com-
mand/control to export a vocabulary.

import cf_pandas as cfp

1.4.1 Select from list of CF standard names

You can read in all available standard_names with a utility in cf-pandas with:

cfp.standard_names().

names = cfp.standard_names()

The basic idea is to write in a nickname for the variable you are representing in the top text box, and then select the
standard_names that “count” as that variable. One problem is that if you don’t include and exclude specific strings, the
list of standard_names is too long to look through and select what you want for a given variable nickname.

Here is an example with a few inputs initialized to demonstrate. You can add more strings to exclude by adding them to
the text box with a pipe (“|”’) between strings like air | change. You can pipe together terms to include also; the terms
are treated as the logical “or” so the options list will show strings that have at least one of the “include” terms.

Once you narrow the options in the dropdown menu enough, you can select the standard_names you want. When
you are happy with your selections, click “Press to save”. This creates an entry in the class “vocab” of your variable
nickname mapping to the attribute “standard_name” exactly matching each of the standard_names selected. Then, you
can enter a new variable nickname and repeat the process to create another entry in the vocabulary.

w = cfp.Selector(options=names, nickname_in="temp",
exclude_in="air", include_in="temperature")

w.button_pressed()

interactive(children=(Text(value="temp', description="nickname'), Text(value='temperature
— "', description="inclu...

Button(description='Press to save', style=ButtonStyle())

Output ()

The rest of the notebook shows results based on the user not changing anything in the widget so the results can be
consistent.

Look at vocabulary

w.vocab

{'temp': {'standard_name': 'brightness_temperature$'}}

Save vocabulary for future use

w.vocab.save("'std_name_demo")

Open and check out your vocab with:

1.4. Widget to help humans select strings to match 11

cf-pandas, Release 0.8.1

cfp.Vocab("std_name_demo™)

{'temp': {'standard_name': 'brightness_temperature$'}}

1.5 API

1.5.1 Accessor

From cf-xarray.

class cf_pandas.accessor.CFAccessor (pandas_obj)

Bases: object
Dataframe accessor analogous to cf-xarray accessor.
Attributes

axes
Property that returns a dictionary mapping valid Axis standard names for .c£[] to variable
names.

axes_cols
Property that returns a list of column names from the axes mapping.

coordinates
Property that returns a dictionary mapping valid Coordinate standard names for .c£f[] to
variable names.

coordinates_cols
Property that returns a list of column names from the coordinates mapping.

custom_keys
Returns a dictionary mapping criteria keys to variable names.

standard_names
Returns a dictionary mapping standard_names to variable names, if there is a match.

Methods

keys() Utility function that returns valid keys for .cf[].

property axes: Dict[str, List[str]]

Property that returns a dictionary mapping valid Axis standard names for .cf[] to variable names.

This is useful for checking whether a key is valid for indexing, i.e. that the attributes necessary to allow
indexing by that key exist. It will return the Axis names ("X", "Y", "Z", "T") presentin .columns.

Returns
Dictionary with keys that can be used with __getitem__ or as .cf[key]. Keys will be the
appropriate subset of (“X”, “Y”, “Z”, “T”). Values are lists of variable names that match that
particular key.

Return type
dict

12

Chapter 1. Installation

cf-pandas, Release 0.8.1

property axes_cols: List[str]

Property that returns a list of column names from the axes mapping.

Returns
Variable names that are the column names which represent axes.

Return type
list

property coordinates: Dict[str, List[str]]

Property that returns a dictionary mapping valid Coordinate standard names for .c£[] to variable names.

This is useful for checking whether a key is valid for indexing, i.e. that the attributes necessary to al-

low indexing by that key exist. It will return the Coordinate names ("latitude"”, "longitude",
"vertical", "time") presentin .columns.
Returns

Dictionary of valid Coordinate names that can be used with __getitem__ or .cf[key].
Keys will be the appropriate subset of ("latitude", "longitude", "vertical"”,
"time"). Values are lists of variable names that match that particular key.

Return type
dict

property coordinates_cols: List[str]
Property that returns a list of column names from the coordinates mapping.

Returns
Variable names that are the column names which represent coordinates.

Return type
list

property custom_keys
Returns a dictionary mapping criteria keys to variable names.

Returns
Dictionary mapping criteria keys to variable names.

Return type
dict

Notes

Need to use this with context manager version of providing custom_criteria.

keys() — Set[str]
Utility function that returns valid keys for .cf[].

This is useful for checking whether a key is valid for indexing, i.e. that the attributes necessary to allow
indexing by that key exist.

Returns
Set of valid key names that can be used with __getitem___ or .cf[key].

Return type
set

1.5. API 13

cf-pandas, Release 0.8.1

property standard_names

Returns a dictionary mapping standard_names to variable names, if there is a match. Compares with all
cf-standard names.

Returns
Dictionary mapping standard_names to variable names.

Return type
dict

Notes

This is not the same as the cf-xarray accessor method of the same name, which searches for variables with
standard_name attributes and surfaces those values to map to the variable name.

cf_pandas.accessor.apply_mapper (mappers: Union[Callable[[DataFrame, str], List[str]],
Tuple[Callable[[DataFrame, str], List[str]], ...]], obj: DataFrame, key:
Hashable, error: bool = True, default: Optional[Any] = None) —
List[Any]

Applies a mapping function; does error handling / returning defaults. Expects the mapper function to raise an
error if passed a bad key. It should return a list in all other cases including when there are no results for a good
key.

1.5.2 cf-pandas utilities

Utilities for cf-pandas.

cf_pandas.utils.always_iterable(obj: ~typing.Any, allowed=(<class 'tuple'>, <class 'list'>, <class 'set'>,
<class 'dict'>)) — Tterable

This is from cf-xarray.

cf_pandas.utils.astype (value, type_)

Return value as type type_. Particularly made to work correctly for returning string, PosixPath, or Timestamp as
list.

cf_pandas.utils.match_criteria_key(available_values: list, keys_to_match: Union[str, list], criteria:
Optional[dict] = None, split: bool = False) — list

Use criteria to choose match to key from available available_values.
Parameters

» available_values (1ist) — String or list of strings to compare against list of category
values. They should be keys in criteria.

* keys_to_match (str, 1list)- Key(s) from criteria to match with available_values.

e criteria(dict, optional)- Criteriato use to map from variable to attributes describing
the variable. If user has defined custom_criteria, this will be used by default.

e split (bool, optional) - If split is True, split the available_values by white space be-
fore performing matches. This is helpful e.g. when columns headers have the form “stan-
dard_name (units)” and you want to match standard_name.

Returns
Values from available_values that match keys_to_match, according to criteria.

Return type
list

14 Chapter 1. Installation

cf-pandas, Release 0.8.1

Notes

This uses logic from cf-xarray.

cf_pandas.utils.set_up_criteria(criteria: Optional[Union[dict, Iterable]] = None) — ChainMap

Get custom criteria from options.

Parameters
criteria (dict, optional) — Criteria to use to map from variable to attributes describing
the variable. If user has defined custom_criteria, this will be used by default.

Returns
Criteria

Return type
ChainMap

cf_pandas.utils.standard_names()
Returns list of CF standard_names.

Returns
All CF standard_names

Return type
list

1.5.3 Reg class for writing regular expressions

Class for writing regular expressions.

class cf_pandas.reg.Reg(exclude: Optional[Union[List[str], str]] = None, exclude_start:
Optional[Union[List[str], str]] = None, exclude_end: Optional[Union[List[str], str]]
= None, include: Optional[Union[List[str], str]] = None, include_or:
Optional[Union[List[str], str]] = None, include_exact: Optional[str] = None,
include_start: Optional[str] = None, include_end: Optional[str] = None,
ignore_case: bool = True)

Bases: object

Class to write a regular expression.

Notes

* Input strings are never allowed to be empty.
» Need escape characters on any special characters, and then convert to raw, e.g., r”’[celsius]” for “[celsius]”.
* The exclude options are logical “or”.

* The include option is logical “and”, include_or is logical “or”, and the other include_ options allow for only
one selection. If you want to use more than one include_start for example, you should make an additional
regular expression.

1.5. API 15

cf-pandas, Release 0.8.1

Methods
check() Check to make sure selected options are compatible.
exclude(string) Exclude string from anywhere in matches.
exclude_end(string) Exclude string from end of matches.
exclude_start(string) Exclude string from start of matches.
include(string) String must be present anywhere in matches, logical
"and".
include_end(string) String must be present at the end of matches.
include_exact(string) String must match exactly.
include_or(string) String must be present anywhere in matches, logical
"or".
include_start(string) String must be present at the start of matches.
pattern() Generate regular expression pattern from user rules.
check()

Check to make sure selected options are compatible.

exclude (string: Union/[str, list])
Exclude string from anywhere in matches.

Parameters
string (str, list)- Matches with regular expression pattern will not contain string(s).

Notes

As a list of strings, this acts as a logical “or” for the exclusions.

exclude_end (string: Union/str, list])
Exclude string from end of matches.

Parameters
string (str, 1list)- Matches with regular expression pattern will not end with string(s).

Notes

As alist of strings, this acts as a logical “or” for the exclusions.

exclude_start (string: Union/[str, list])

Exclude string from start of matches.

Parameters
string (str, list)- Matches with regular expression pattern will not start with string(s).

16 Chapter 1. Installation

cf-pandas, Release 0.8.1

Notes

As alist of strings, this acts as a logical “or” for the exclusions.

include (string: Union[str, list])

String must be present anywhere in matches, logical “and”.

Parameters
string (str, 1list)- Matches with regular expression pattern will contain all string(s).

Notes

A list of strings will be treated as a logical “and”.

include_end (string: str)

String must be present at the end of matches.

Parameters
string (str) — Matches with regular expression pattern will end with string.

include_exact (string: str)
String must match exactly.

Parameters
string (str) — A match with regular expression pattern will be exactly string.

include_or (string: Union/[str, list])

String must be present anywhere in matches, logical “or”.

Parameters

string (str, 1list)-—Matches with regular expression pattern will contain at lease one of

string(s).

Notes

A list of strings will be treated as a logical “or”.

include_start (string: str)

String must be present at the start of matches.

Parameters
string (str) — Matches with regular expression pattern will start with string.

pattern() — str

Generate regular expression pattern from user rules.

Returns
Regular expression accounting for all input selections.

Return type
str

cf_pandas.reg. joinpat (regs: Sequence[Reg]) — str
Join patterns from Reg objects.

Parameters
regs (Sequence) — Reg objects from which .pattern() will be used.

1.5. API

17

cf-pandas, Release 0.8.1

Returns
Regular expression patterns from regs joined together with “|”

Return type
str

1.5.4 Vocab class for handling custom variable-selection vocabularies

Class for creating and working with vocabularies.

class cf_pandas.vocab.Vocab (openname: Optional[str] = None)
Bases: object

Class to handle vocabularies.

Methods
add(other_vocab, method) Add two Vocab objects together...
make_entry(nickname, expressions|, attr]) Make an entry for vocab.
open_f£ile(openname) Open previously-saved vocab.
save(savename) Save to file.

add (other_vocab: Union[DefaultDict[str, Dict[str, str]], Vocab], method: str) — Vocab
Add two Vocab objects together. ..

by adding their .vocab s together. Expressions are piped together but otherwise not changed. This is used
for both *_add__ and __iadd__.

Parameters
¢ other_vocab (Vocab) — Other Vocab object to combine with.

¢ method (str)— Whether to run as “add” which returns a new Vocab object or “iadd” which
adds to the original object.

Returns
vocab + other_vocab either as a new object or in place.

Return type
Vocab
make_entry (nickname: str, expressions: Union[str, list], attr: str = 'standard_name")

Make an entry for vocab.
Parameters
¢ nickname (str) — The nickname to call the variable being represented in this entry.

e expressions (str, list) - Regular expression(s) to use to select out the variable in
a regex match. Multiple expressions input in a list are piped together to create one str of
expressions.

e attr (str) — What attribute to identify the regular expressions with. Default is “stan-
dard_name”, but other reasonable options are any variable attributes in a netcdf file such

EEINNT3

as “units”, “name”, and “long_name”.

18 Chapter 1. Installation

cf-pandas, Release 0.8.1

Examples

The following creates an entry in the vocabulary stored in vocab.vocab. It doesn’t print the entry but it has
been pasted in below the example to show what it looks like.

>>> import cf_pandas as cfp

>>> vocab = cfp.Vocab()

>>> vocab.make_entry("temp", ["a","b"], attr="name")
{'temp': {'standard_name': 'a|b'}})

open_file(openname: Union[str, PurePath])

Open previously-saved vocab.

Parameters
openname (str) — Where to find vocab to open.

save (savename: Union[str, PurePath])
Save to file.

Parameters
savename (str, PurePath) - Filename to save to.

cf_pandas.vocab.merge (vocabs: Sequence[Vocab]) — Vocab
Add together multiple Vocab objects.

Parameters
vocabs (Sequence[Vocab]) — Sequence of Vocab objects to merge.

Returns
Single Vocab object made up of input vocabs.

Return type
Vocab

1.5.5 widget class for easy human selection of variables to exactly match

Widget
class cf_pandas.widget.Selector (options: Sequence, vocab: Optional[Vocab] = None, nickname_in: str =",
include_in: str="", exclude_in: str ="")
Bases: object

Coordinates interaction with dropdown widget to make simple vocabularies.

Options are filtered by a regular expression written to reflect the include and exclude inputs, and these are updated
when changed and shown in the dropdown. The user should select using command or control to make multiple
options. Then push the “save” button when the nickname and selected options from the dropdown menu are the
variables you want to include exactly in a future regular expression search.

1.5. API 19

cf-pandas, Release 0.8.1

Examples

Show widget with a short list of options. Input a nickname and press button to save an entry to the running
vocabulary in the object:

>>> import cf_pandas as cpf
>>> sel = cfp.Selector(options=["varl", "var2", "var3"])
>>> sel

See resulting vocabulary with:

>>> sel.vocab

Methods
button_pressed(*args) Saves a new entry in the catalog when button is
pressed.
button_pressed(*args)
Saves a new entry in the catalog when button is pressed.
cf_pandas.widget.dropdown (nickname: str, options: Union[Sequence, Series], include: str =", exclude: str =
II)

Makes widget that is used by class.

Options are filtered by a regular expression written to reflect the include and exclude inputs, and these are updated
when changed and shown in the dropdown. The user should select using command or control to make multiple
options. Then push the “save” button when the nickname and selected options from the dropdown menu are the
variables you want to include exactly in a future regular expression search.

Parameters

* nickname (str) — nickname to associate with the Vocab class vocabulary entry from this,
e.g., “temp”. Inputting this to the function creates a text box for the user to enter it into.

» options (Sequence) — strings to select from in the dropdown widget. Will be filtered by
include and exclude inputs.

* include (str) — include must be in options values for them to show in the dropdown. Will
update as more are input. To input more than one, join separate strings with “|”. For example,
to search on both “temperature” and “sea_water”, input “temperature|sea_water”.

» exclude (str) — exclude must not be in options values for them to show in the dropdown.
Will update as more are input. To input more than one, join separate strings with “|”. For
example, to exclude both “temperature” and “sea_water”, input “temperature|sea_water”.

20 Chapter 1. Installation

c

cf_pandas.
cf_pandas.
cf_pandas.
cf_pandas.
cf_pandas.

accessor, 12
reg, 15
utils, 14
vocab, 18
widget, 19

PYTHON MODULE INDEX

21

cf-pandas, Release 0.8.1

22 Python Module Index

A

add Q) (¢f_pandas.vocab.Vocab method), 18
always_iterable() (in module cf _pandas.utils), 14
apply_mapper) (in module cf_pandas.accessor), 14
astype () (in module cf_pandas.utils), 14

axes (c¢f_pandas.accessor.CFAccessor property), 12

axes_cols (c¢f_pandas.accessor.CFAccessor property),
12

B

button_pressed()
method), 20

(c¢f_pandas.widget.Selector

C

cf_pandas.accessor
module, 12
cf_pandas.reg
module, 15
cf_pandas.utils
module, 14
cf_pandas.vocab
module, 18
cf_pandas.widget
module, 19
CFAccessor (class in c¢f_pandas.accessor), 12
check () (¢f_pandas.reg.Reg method), 16
coordinates (c¢f_pandas.accessor.CFAccessor prop-
erty), 13
coordinates_cols
property), 13
custom_keys (c¢f_pandas.accessor.CFAccessor prop-
erty), 13

(¢f_pandas.accessor.CFAccessor

D

dropdown () (in module cf_pandas.widget), 20

E

exclude Q) (¢f_pandas.reg.Reg method), 16
exclude_end () (c¢f_pandas.reg.Reg method), 16
exclude_start Q) (c¢f_pandas.reg.Reg method), 16

INDEX

include Q) (c¢f_pandas.reg.Reg method), 17
include_end () (c¢f _pandas.reg.Reg method), 17
include_exact () (¢f_pandas.reg.Reg method), 17
include_or) (¢f_pandas.reg.Reg method), 17
include_start () (¢f_pandas.reg.Reg method), 17

J

joinpat Q) (in module cf_pandas.reg), 17

K

keys Q) (c¢f_pandas.accessor.CFAccessor method), 13

M

make_entry () (¢f_pandas.vocab.Vocab method), 18

match_criteria_key() (in module cf_pandas.utils), 14

merge () (in module cf_pandas.vocab), 19

module
cf_pandas.
cf_pandas.
cf_pandas.
cf_pandas.
cf_pandas.

O

open_file() (¢f_pandas.vocab.Vocab method), 19

P

pattern() (c¢f_pandas.reg.Reg method), 17

R

Reg (class in cf_pandas.reg), 15

S

save () (¢f_pandas.vocab.Vocab method), 19

Selector (class in cf_pandas.widget), 19
set_up_criteria() (in module cf_pandas.utils), 15
standard_names (c¢f_pandas.accessor.CFAccessor

property), 13
standard_names () (in module cf_pandas.utils), 15

accessor, 12
reg, 15
utils, 14
vocab, 18
widget, 19

23

cf-pandas, Release 0.8.1

Vv

Vocab (class in cf_pandas.vocab), 18

24 Index

	Installation
	How to use cf-pandas
	Get some data
	Basic accessor usage
	Select variable
	Create custom vocabulary
	Access variable

	Other utilities
	Access all CF Standard Names
	Use vocabulary to match any list

	Reg: Write Regular Expressions
	Write a regular expression

	Vocab: manage custom vocabularies
	What does a custom vocabulary look like?
	cf-xarray
	cf-pandas

	How should I use the custom vocabulary?
	How can I make a custom vocabulary? Introducing the Vocab class.
	Working with vocabularies
	Save to file
	Read from file
	Combine

	Use the Reg class to write regular expressions

	Widget to help humans select strings to match
	Select from list of CF standard_names

	API
	Accessor
	cf-pandas utilities
	Reg class for writing regular expressions
	Vocab class for handling custom variable-selection vocabularies
	widget class for easy human selection of variables to exactly match

	Python Module Index
	Index

